Spatial Analysis of Trip Generation

Karthik K. Srinivasan and Vishnu Baburajan Dept. of Civil Engineering, IIT Madras

> UMCSP Conference 13th Jul 2012

Outline

- Introduction
- Literature Review
- Objectives
- Data Description
- Methodology
- Results
- Conclusion

Introduction

- Urban travel demand is growing rapidly in many Indian cities
- Need to plan and forecast the demand accurately to try and meet the mobility requirements of users
- Currently demand forecasting is done using the four step planning process
- Trip generation is first and very important step in this process
- Accuracy of this stage is critical as other stages depend on its output
- From policy standpoint, trip generation phase is important for analysis of key transportation performance measures: Congestion, VKT, VHT, Emissions etc.

Synthesis of Literature Review

- Trip Generation has been extensively studied
- Most analysis at household level fewer at individual level
- Model structure: OLS, and ordered models tend to be widely used
- Commonly used variables: income, vehicle ownership, nworkers, hhsize
- Models assume spatial homogeneity and spatial independence

Spatial Analysis - Definitions

- Spatial Dependence: The responses of observations that are close in space influence each other
- Spatial Heterogeneity: The regression coefficients for explanatory variable (such as income, vehicle ownership) varies across respondents based on spatial location (zones).
- Global or non-spatial model: no spatial dependence and no spatial heterogeneity

Objectives

- Compare the effect of activity-based variables on (non-spatial) trip frequency model at individual level
- Analyze spatial heterogeneity and spatial dependence in trip frequency models at individual level
- Analyze spatial heterogeneity and spatial dependence at household level

Data description

- Chennai Household Travel Survey (CHTS 2004-05)
- Records with inconsistencies were removed
- The sample used for analysis had:-
 - 1433 individuals
 - 779 households
 - Workers and Non-workers used for analysis
 - Single day travel diary [Working day]

Individual Level

Variable	Mean	Variance	Minimum	Maximum
Trips	2.54925	1.19101	2	9
Excess Stops	0.20978	0.35312	0	6
Tours	1.17009	0.17814	1	3

Individual Level

Variable	Mean	Variance	Minimum	Maximum
Trips	4.6775	7.09898	2	21
Excess Stops	0.38492	0.77613	0	6
Tours	2.14694	1.36770	1	9

- Average household size 4.29
- Average Monthly income Rs. 13,681
- Percentage of households with
 - 0 Workers- 8.45
 - 1 Worker- 49.28
 - 2 Workers- 28.22
 - 3 or more workers- 14.04
- Fraction of households with working women- 0.261
- Mean Number of full-time workers- 1.546

- Driving knowledge among
 - Men- 84.11
 - Women- 32.14
- Vehicle Ownership
 - 0 vehicle 22.24
 - 1 vehicle 43.43
 - 2 or more vehicles 34.33
- Average vehicles per household- 1.28

- Percentage of household's with
 - Bus-stops within 500 m 86.74
 - Train station within 1 km 33.42
 - % workers with bus-stop within 500 m from work-place - 83.09
 - % workers with trn-stn within 1 km from workplace - 37.83

Methodology

- Non-spatial Model
 - Dependent Variable: No. of trips per day of individual
 - Independent Variables: individual, household characteristics etc.
 - Model: Multiple Linear Regression
- Spatial Model
 - Geographically Weighted Regression
- Both models built at individual and household levels and compared.

Results of Non-Spatial Model at Individual Level

	Mariahla	Trips	
	Variable	Coef	T-sta
Constants Variables	Constant	2.36	27.06
	Diploma-holder	0.22	2.10
Individual Characteristics	Low-income worker		2.23
	Employed, no access to vehicle	0.12	1.73
Household Characteristics	Number of vehicles per adult	0.16	1.59
Household Characteristics	Owns 2+ cars	-0.46	-2.61
	Head with kids of age < 5	0.28	3.03
Intra-Household Interaction	Head with kids of age 6 -18	0.12	2.74
	Spouse with kids of age < 5	0.33	2.51

Results of Individual Level Model

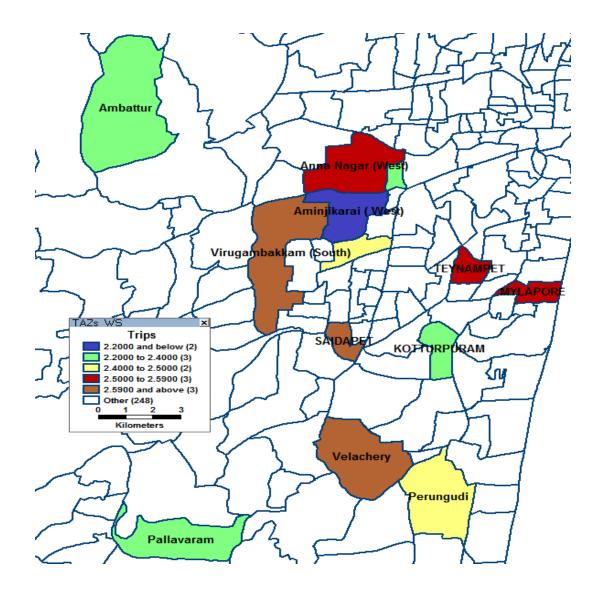
		Trips	
	Variable	Coef	T-sta
Work Characteristics	Distance to Work	-0.02	-5.19
	Flexible work hours	0.14	2.11
Accessibility Characteristics	Peri-urban area	0.17	2.55
	Train station within 1 km	0.24	3.82
	Cinema theatre within 1 km	0.18	3.00
Mode Chosen	Bicycle was used	-0.33	-2.63
	Walk is used	-0.27	-3.11
	Public Transport is used	-0.48	-6.49

Spatial Model Description

• Geographically Weighted Regression Model:

$$y_i = a_0(u_i, v_i) + \sum_k a_k(u_i, v_i) x_{ik} + \varepsilon_i$$

- The coefficients a0, a1, a2,.. vary with latitude and longitude (ui,vi)
- In GWR, each observation is weighted in accordance with its proximity to 'i'.
- Spatial Influence of observation j on observation i is given by: $W_{ij} = e^{(-d_{ij}^2/h^2)}$
- Regression coefficients obtained using above weights:


 $a(u_i, v_i) = (X^t W X)^{-1} X^t W y$

where as usual regression assumes W = 1 if i= j and 0 otherwise.

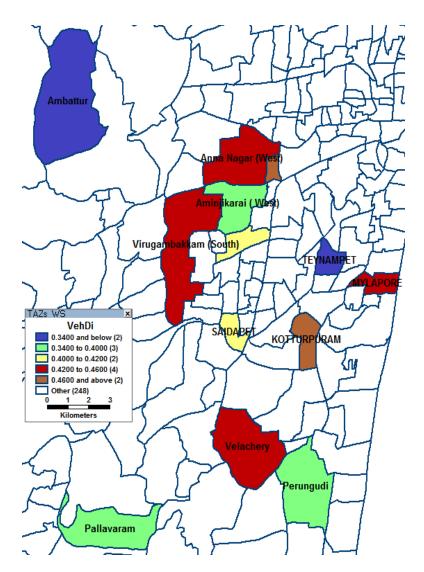
Goodness of fit & Spatial Influence

- Individual Level
 - Non-spatial (conventional) R²: 0.10
 - Spatial R²: 0.27
 - AIC test also provides statistical evidence that spatial model is better
 - Spatial Influence Weight: 0.67, 0.45, 0.04 at 0.5, 1, and 2km

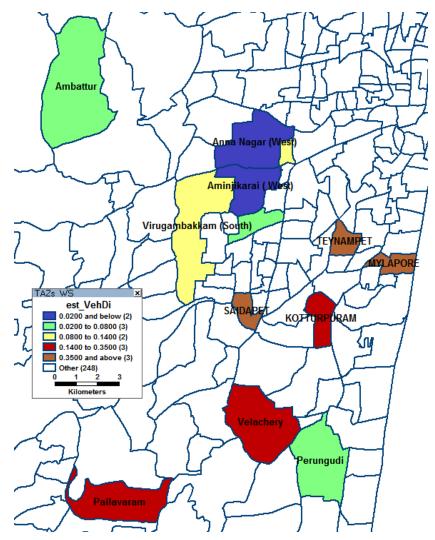
Spatial Variation in Trip Frequency

Saidapet – 3.42

Aminjikarai West – 2.17

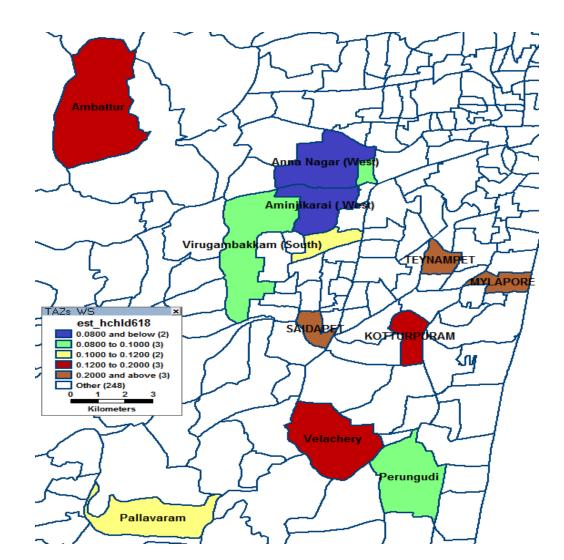

Spatial Heterogeneity at Individual Level

- Spatial Differences seen in
 - Vehicle availability per adult
 - Indicators for diploma-holder
 - Low-income worker
 - Work-time flexibility
 - Presence of train stations
 - Walk mode
 - Head of household with children
 - Spouse with children below 5 years
 - Work distance


- Non Spatial Variables
 - HH with multiple car
 - Bicycle use
 - Public transport use
 - Worker without vehicle access

Spatial Effects: Vehicle/adult

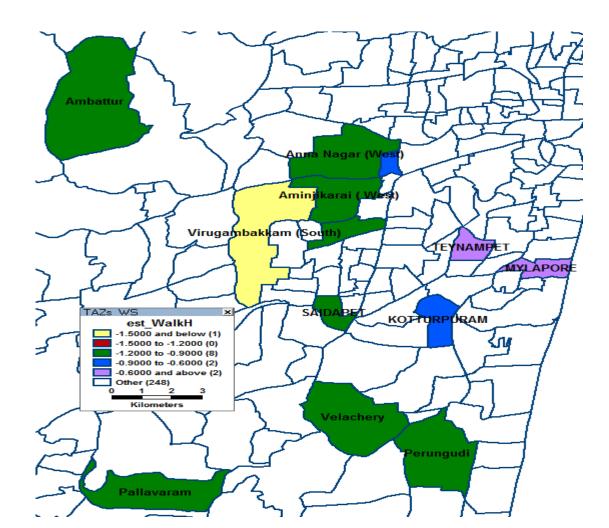
• Vehicle Availability



Vehicle Availability Coefficient

Presence of Children

• Head with child 6+



Household Level Model

- Household
 - Non-spatial (conventional) R²: 0.63
 - Spatial R²: 0.67
 - Improvement is not as large though still significant
 - Spatial Influence Weight: 0.61, 0.37, 0.02 at 0.5, 1, and 2km
- Few variables had spatial variation in coefficients
 - number of officers in HH, number of individuals choosing IPT and Walk modes

Spatial Variation at Household Level

• Walk mode is chosen

Household vs Individual Level Model

- Several variables significant in individual level models but not at the household level
- Several coefficients show spatial variation at individual but not household level
- Aggregation at household level can mask local variability present in individual trip making
- Potential for misinterpretation of role of explanatory variables at household level

Summary

- Non-Spatial and Spatial Models for Trip Frequency Developed at Individual and Household Level
- Activity characteristics, intra-household interactions, Work and accessibility characteristics affect individual trip frequency
- Spatial model leads to a notable improvement in goodness of fit at individual level (nearly 10 to 27%) and a modest increase at household level (63-67%)

- Evidence of spatial dependence of nearby observations is seen. This influence diminishes rapidly with increasing distance
- Strong spatial variation in coefficients seen for several variables at individual level, but fewer variables at household level
- Including these spatial effects at individual level can lead to more behavioural and accurate trip production models